

Grid Modernization

Evaluating system needs in light of an evolving resource mix

Laura Rauch Director, Resource Adequacy Coordination March 1, 2018

MISO drives value creation through efficient and reliable markets, operations, planning, and innovation

The most reliable, value-creating RTO

MISO by-the-numbers		
High Voltage Transmission	65,800 miles	
Generation Capacity	174,000 MW	
Peak Summer System Demand	127,125 MW	
Customers Served	42 Million	

There are many considerations in discussing the grid of the future, with implications to operations, planning, business models and regulatory models

"The goal of the "Future of the Grid: Evolving to Meet America's Needs" initiative was to determine - through a holistic approach that considers the system's many interdependencies - a path forward that will ensure resilience, mitigate vulnerabilities, and incorporate innovation, while continuing to provide affordable, safe, reliable, and ubiquitous power."

-- "The Future of the Grid" by GridWise Alliance for DOE (2014)

Recently, MISO and stakeholders discussed the future of the grid, with five potential focus areas

The Grid will be a two-way delivery system **Generation** will become more distributed and intermittent Additional technologies will be incorporated into the grid at an increasing pace Markets will compensate necessary resource attributes and services **Consumers** are starting to use the grid differently

The Grid will be a two-way delivery system

- The grid (T&D) serves as a "central nervous system" for an increasingly dynamic, complex system
- Will no longer be a one-way "delivery pipe" for electrons
- Interdependencies between transmission and distribution
 - infrastructures will increase
- Distribution providers will shift from energy delivery to the facilitation of broader services

As lines blur between transmission and distribution, continued adaptation and execution will be important

Category	2000		Future
Predictability of Flows for Planning	Highly predictable	Moderately predictable	Less predictable to unpredictable
Balancing Generation and Load	Generation is built and expected to serve local load obligations	Generation is built and dispatched to serve regional load obligations	Generation and load work together to serve load obligations
Security	Physical security prioritized, cyber threat minimal	Physical security important, cyber threat significant	Increased complexity and likelihood of threats
Grid Intelligence	Primitive	Facilitative	Transformative, machine learning, artificial intelligence

Generation will become more distributed and intermittent

MISO Generation Portfolio Evolution

MISO Active Queue by Study Area

The MISO region must prepare for the continued fleet transition indicated by the interconnection queue

- Traditional baseload resources will remain under pressure
- New generation will be central and distributed, with a mix of dispatchable and non-dispatchable resources. Economics favor utility-scale renewables over customer-owned, but policies may support both
- Increased intermittency will necessitate more flexibility from other resources and changes to MISO planning, markets, and operations

2032 MISO MTEP Future Scenarios – Energy Mix

Additional technologies with new and different operating characteristics – including enabling technologies – are incorporated at an increasing pace

- Example: Storage
 - Growing component of the system with multiple uses
 - Active projects include pumped hydro and battery storage; 140 MW of capacity in the generation queue
 - Accelerated growth in high cost areas (Hawaii, California, overseas)
 - The grid, itself, functions as an energy storage system in some regards

Storage Applications by User:

Wholesale

- Energy Arbitrage
- Black Start
- Ramp
- Spin / Non-Spin Reserves
- Frequency Regulation
- Voltage Support

Utility

- Resource Adequacy
- Transmission
 Congestion Relief
- Transmission Deferral
- Distribution Deferral
- Microgrid Islanding

Retail

- Time-of-Use Bill Management
- Demand Charge Reduction
- Increased PV Self-Consumption
- Backup Power

Markets will provide price signals that compensate necessary resource attributes and services -- will help to integrate the overall system

- Increased variability in supply requires more flexibility from other generating assets
 - Adaptable and responsive supply and load will compensate for less flexible and non-dispatchable resources
 - Increased zero marginal cost resources will place pressures on energy prices but the value of flexibility will increase
 - Market design evolves to compensate for value provided or charging for new costs/burdens incurred
- As load and supply characteristics evolve at both the wholesale and retail levels, the seamless flow of services between levels increases
 - Importance of alignment in pricing between wholesale and retail

Consumers are starting to use the grid differently, wanting more control over their energy choices while still valuing reliability and low price

- Emergence of the "prosumer" consumers and producers of energy
 - Disaggregated and transparent costs are identified to understand the true cost of electricity services
 - Possible emergence of new business models
 - Customers compensated for energy and ancillary services
- The trend is accelerated in high cost regions with supporting policies
 / subsidies
- Customers stay connected to the grid to ensure reliability

In summary...

The Grid will be a two-way delivery system

Generation will become more distributed and intermittent

Additional technologies will be incorporated into the grid at an increasing pace

Markets will compensate necessary resource attributes and services

Consumers are starting to use the grid differently

Four primary markets are MISO's tools to manage generation and transmission...

Resource Adequacy

- Prompt year ahead forward "planning reserve"
- Assures capacity exists to produce energy and ancillary products

Financial Transmission Rights Market

- Hedge risk of transmission congestion costs
- Preserves transmission rights through ARR allocation

Day-Ahead Market

- Forward energy and operating reserves
- Commits generation
- Establishes next day financial commitments by hour

Real-Time Market

- Spot energy and operating reserves
- Transparent economic signals
- 5-minute energy dispatch to satisfy system demand & manage transmisn congestion

Annual Auction

FTR
Monthly/Seasonal/An
nual Auction and
ARR Annual
Allocation

Resource Offers, Demand Bids and Physical Schedules

Resource Offers and Physical Schedules

... Paired with a strong transmission planning process

MISO Transmission Expansion Plan (MTEP) identifies issues and opportunities, develops alternatives for consideration, and evaluates those options to determine effective transmission solutions.

- Ensure the reliability of the transmission system
- Provide economic benefits such as increased market efficiency
- Facilitate public policy objectives such as integrating renewable energy
- Address other issues or goals identified through the stakeholder process

The region continues to successfully navigate the dynamic environment to expand value

Improved Reliability

- Value of additional energy served based on RTO transmission performance versus non-RTO regions
- MISO has outperformed total RTO region reliability every year since 2012
- Economies of scale in Compliance work

Reduced Need for Additional Assets

- Footprint diversity allows the pool to share resources reducing capacity need for reserves
- Generator availability improves with market reducing need for additional resources
- Demand response growth delays need for generation

More Efficient Use of Existing Assets

- Security constrained energy dispatch ensures least cost generation is deployed first
- Ancillary Service Market frees cheaper capacity for energy and secures regulation service and reserves at competitive cost

Fast growth in wind drove development of new products and services

Major Milestones:

- 2008 Interconnection
 Queue Reform
- 2009 Wind Forecasts in Operations
- 2009 Launched Ancillary Services
- 2010 Dispatchable Intermittent Resources
- 2011 Multi-Value Transmission Projects
- 2012 Interconnection
 Queue Reform
- 2016 Solar Forecasts in Operations
- 2017 Interconnection
 Queue Reform

Significant new DERs is forecasted in MISO – external forces could accelerate pace of change

Assessment will seek to find inflection points of renewable integration complexity

Study Focus
Areas:

The execution of MISO's strategy relies on secure systems with the tools and information necessary to ensure reliability

MISO's role continues to evolve as the industry's requirements change

Thank you

Links for more information

- MTEP (Transmission Planning):
 - https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/PAC/2017/20170719/20170719%20PAC%20Item%2002b%20MTEP19%20Fut ures%20Siting%20Process.pdf
- Dispatchable Intermittent Resources:
 - https://www.google.com/amp/s/www.greentechmedia.com/amp/article/renewables-curtailment-in-california-and-the-midwest-what-can-we-learn-from
 - (From 2013, focused on
 - rules): <a href="https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/Workshops%20and%20Special%20Meetings/2013/20130802%20Wind%20Integration%20Workshop/20130802%20Wind%20Integration%20Workshop%20Presentation.pdfWind forecasting (from 2015):
- Wind capacity credit:
 - https://www.misoenergy.org/Library/Repository/Study/LOLE/2017%20Wind%20Capacity%20Report.pdf
- Demand Response:
 - https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/Training%20Materials/MP%20100/Demand%20Response%20Primer.pdf
- Ramp capability product:
 - https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/Workshops%20and%20Special%20Meetings/2016/20160115%20Ramp%20Capability%20Integration%20Technical%20Workshop/20160115%20Ramp%20Workshop%20Presentation.pdf
- · Market Management System Enhancement effort:
 - https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/BOD/BOD/2017/20170622/20170622%20BOD%20Item%2006c%20MSE%20and%20Summary.pdf
- DER projections:
 - https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/Workshops%20and%20Special%20Meetings/2017/20170627%20Applied%20Energy%20Group/20170627%20AEG%20%20DR%20EE%20DG%20Assessment%20Data%20v3.pdf
 - https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/Workshops%20and%20Special%20Meetings/2017/20170627%20Applied%20Energy%20Group/20170627%20AEG%20DR%20EE%20DG%20Assessment%20Data%20Appendix.pdf
- AGC:
 - https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/MSC/2017/20170810/20170810%20MSC%20Item%2005%20Fast%20AGC%20 Enhancement%20Study.pdf
- ELMP ex-post pricing formulations:
 - https://www.misoenergy.org/_layouts/MISO/ECM/Download.aspx?ID=169056
- Storage (see links in the meeting materials section):
 - https://www.misoenergy.org/Events/Pages/CIWenergystorage20170724.aspx

